Code: 19EC3602

III B.Tech - II Semester - Regular Examinations - JUNE 2022

INTRODUCTION TO VLSI DESIGN (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

PART - A

- 1. a) Discuss the difference between blocking and non-blocking assignments with an example.
 - b) What is an advantage of CPLD over an FPGA?
 - c) Draw the transistor circuit symbols for nMOS enhancement, nMOS depletion.
 - d) Draw the stick diagram of CMOS inverter.
 - e) What are the differences between constant voltage scaling and constant field scaling?

PART – B

UNIT – I

2. a) Write a Verilog gate-level model of a circuit that will produce two outputs, *d* and *b*, equal to the difference and borrow produced by subtracting two binary input bits *a* and *b*.

6 M

b) Design 4-bit counter using Verilog-HDL code.

6 M

OR

3.	a)	Write a Verilog HDL gate-level program to simulate			
		the 4:1 multiplexer.	6 M		
	b)	Write the stimulus block/test bench to verify the above			
		4:1 multiplexer.	6 M		
		TINITE II			
4		<u>UNIT – II</u>	$\sim M$		
4.	a)	Explain the CPLD general architecture.	6 M		
	b)		6 M		
_		OR			
5.	a)	Explain the FPGA general architecture.	6 M		
	b)	Draw the internal structure of Configurable Logic			
		Block.	6 M		
		<u>UNIT-III</u>			
6.	a)	With neat sketches, explain the fabrication steps			
		involved in NMOS fabrication process.	6 M		
	b)	Compare the performance of CMOS and BiCMOS			
		technologies.	6 M		
OR					
7.		Explain the CMOS fabrication process in detail.	12 M		
		$\underline{\mathbf{UNIT}} - \underline{\mathbf{IV}}$			
8.	a)	Derive MOS transistor conductance g _m and output			
		conductance g_{ds} .	6 M		
	b)	In the inverter circuit: what is meant by Zp.u. and			
	,	Zp.d.? Derive the required ratio between Zp.u. and			
		Zp.d. if an nMOS inverter is to be driven from another			
		nMOS inverter.	6 M		
		OR	J		

9.	a)	Draw the Layout diagram of CMOS inverter at 2μm	
		micron based design rules.	6 M
	b)	Specify the minimum design rules for all layers in	
		lamda (λ) based rules.	6 M
		$\underline{\mathbf{UNIT} - \mathbf{V}}$	
10.	a)	Explain how device dimensions are scaled in constant	
		field scaling.	6 M
	b)	Explain the short channel effects due to scaling.	6 M
		OR	
11.	a)	Design a 3 bit even parity generator.	6 M
	b)	Implement the Ex-OR gate using switch level logic.	6 M